

Notes by: - Rajan Shukla

2.1. Constructor and methods

2.1.1. Methods

 Method describe behavior of an object.

 A method is a collection of statements that are group together to perform an operation.

Syntax of method is

return-type methodName(parameter-list)

{

//body of method

}

Example of a Method

public String getName(String st)

{

String name="Java Programming";

name=name+st;

return name;

}

Modifier – Modifier are access type of method.

Return Type – A method may return value. Data type of value return by a method is declare in

method heading

Method name – Actual name of the method

Parameter – Value passed to a method

Method body – collection of statement that defines what method does

2.1.2. Constructor

 Constructor in JAVA is a special type of method that is used to initialize the object.

 JAVA constructor is invoked at the time of object creation.

 It constructs the values i.e. provides data for the object that is why it is known as constructor.

 A constructor has same name as the class in which it resides.

 Constructor in JAVA cannot be abstract, static, final or synchronized.

 These modifiers are not allowed for constructor.

Notes by: - Rajan Shukla

class Car

{

String name ;

String model;

Car() //Constructor

{

name ="";

model="";

}

}

Rules for creating JAVA constructor

There are basically two rules defined for the constructor

1. Constructor name must be same as its class name

2. Constructor must have no explicit return type

Difference between Constructor and Method

Sr.No Constructor Method

1 The name of the constructor must be

same as the class name.

The name of the method should not be the

class name.

2 It does not return anything hence no

return type.

It can return and hence it has a return type.

If method does not return anything then the

return type is void.

3 The purpose of constructor is to

initialize the data members of the class.

The method is defined to execute the core

logic of the class.

4 The constructor is invoked implicitly at

the time of object creation.

The method must be called explicitly using

the object name and dot operator.

2.1.3. Types of JAVA constructors

There are two types of constructors

1. Default constructor (no-arg constructor)

2. Parameterized constructor

Notes by: - Rajan Shukla

1. Default Constructor

 A constructor that have no parameter is known as default constructor.

Syntax of default constructor

<class_name> ()

{

}

Example of default constructor.

class Bike1

{

Bike1()

{

System.out.println("Bike is created");

}

public static void main(String args[])

{

Bike1 b=new Bike1();

}

}

This will produce the following result

Bike is created

Note – If there is no constructor in a class, compiler automatically creates a default constructor.

Example of default constructor that displays the default values

class Student

{

int id;

String name;

void display()

{

System.out.println(id+" "+name);

}

public static void main(String args[])

Notes by: - Rajan Shukla

{

Student s1=new Student();

Student s2=new Student();

s1.display();

s2.display();

}

}

This will produce the following result

0 null

0 null

In the above class, any constructor is not created any constructor. Compiler provides the default

constructor. Here 0 and null values are provided by default constructor.

2. Parameterized Constructor

 A constructor that have parameters is known as parameterized constructor.

 Parameterized constructor is used to provide different values to the distinct objects.

Example of parameterized constructor.

class Student

{

int id;

String name;

Student(int i, String n)

{

id = i;

name = n;

}

void display()

{

System.out.println(id+" "+name);

}

public static void main(String args[])

{

Notes by: - Rajan Shukla

Student s1 = new Student4(111,"Ram");

Student s2 = new Student4(222,"Shyam");

s1.display();

s2.display();

}

}

This will produce the following result

111 Ram

222 Shyam

2.1.4. Arguments Passing

 There are two ways to pass an argument to a method.

1. call-by-value

2. call-by-reference

NOTE – In JAVA, when a primitive type is passed to a method, it is passed by value whereas when

an object of any type is passed to a method, it is passed as reference.

1. call-by-value

 In this approach copy of an argument value is pass to a method. Changes made to the

argument value inside the method will have no effect on the arguments.

Example of call-by-value

public class Test

{

public void callByValue(int x)

{

x=100;

}

public static void main(String[] args)

{

int x=50;

Test t = new Test();

t.callByValue(x); //function call

System.out.println(x);

}

Notes by: - Rajan Shukla

}

This will produce the following result

50

2. call-by-reference

 In this reference of an argument is pass to a method. Any changes made inside the method

will affect the argument value

Example of call-by-reference

public class Test

{

int x=10;

int y=20;

public void callByReference(Test t)

{

t.x=100;

t.y=50;

}

public static void main(String[] args)

{

Test ts = new Test();

System.out.println("Before "+ts.x+" "+ts.y);

ts.callByReference(ts);

System.out.println("After "+ts.x+" "+ts.y);

}

}

This will produce the following result

Before 10 20

After 100 50

2.1.5. this keyword

 this keyword is used to refer to current object.

 this is always a reference to the object on which method was invoked.

 this can be used to invoke current class constructor.

 this can be passed as an argument to another method.

Notes by: - Rajan Shukla

Example

class Box

{

Double width, height, depth;

Box (double width, double height, double depth)

{

this.width = width;

this.height = height;

this.depth = depth;

}

}

Here this keyword is used to initialize member of current object.

Program for this Keyword

class thisDemo

{

int a, b;

public void sum(int a, int b)

{

this.a=a;

this.b=b;

}

public void show()

{

int c=a+b;

System.out.println("a="+a);

System.out.println("b="+b);

System.out.println("sum="+c);

System.out.println(" ");

}

public static void main(String args[])

{

thisDemo d1= new thisDemo();

Notes by: - Rajan Shukla

d1.sum(10,20);

d1.show();

thisDemo d2= new thisDemo();

d2.sum(20,30);

d2.show();

}

}

Output:-

a=10

b=20

sum=30

a=20

b=30

sum=50

2.1.6. Command line argument in JAVA

 The command line argument is the argument passed to a program at the time when it is run.

 To access the command-line argument inside a JAVA program is quite easy, they are stored

as string in String array passed to the args parameter of main() method.

Example

class cmddemo

{

public static void main(String[] args)

{

For (int i=0;i< args.length;i++)

{

System.out.println(args[i]);

}

}

}

Execute this program a

Notes by: - Rajan Shukla

C:\>javac cmddemo.java

C:\>java cmddemo 10 Gunwant 30

This will produce the following result

10

Gunwant

30

Programs on Command Line arguments

1) Write a program to accept two number as command line arguments and print addition of

those number?

class demo

{

public static void main(String args[])

{

int n1=Integer.parseInt(args[0]);

int n1=Integer.parseInt(args[1]);

int add=n1+n2;

System.out.println(add);

}

}

C:\>javac demo.java

C:\>java demo 10 20

30

2) Write a program to accept number from command line and print the number is odd or

even?

class clsdemo

{

public static void main(String[] args)

{

int n=Integer.parseInt(args[0]);

if(n%2==0)

{

Notes by: - Rajan Shukla

System.out.println(n+" Is a even no");

}

else

System.out.println(n+" Is Odd no");

}

}

C:\>javac clsdemo.java

C:\>java clsdemo 10

10 Is even no

3) Write a program to accept number from command line and print square root of the

number?

class clsdemo3

{

 public static void main(String[] args)

{

 int n= Integer.parseInt(args[0]);

 double ans;

 ans=Math.sqrt(n);

System.out.println("Square root of "+n+"= " +ans);

}

}

>javac clsdemo3.java

>java clsdemo3 25

Square root of 25= 5.0

2.1.7. Garbage collection

 In JAVA destruction of object from memory is done automatically by the JVM.

 When there is no reference to an object, then that object is assumed to be no longer needed

and the memory occupied by the object are released.

 This technique is called Garbage Collection.

 This is accomplished by the JVM.

 Unlike C++ there is no explicit need to destroy object.

Notes by: - Rajan Shukla

2.1.8. finalize() method

 Sometime an object will need to perform some specific task before it is destroyed such as

closing an open connection or releasing any resources held.

 To handle such situation finalize() method is used.

 finalize()method is called by garbage collection thread before collecting object.

 Its the last chance for any object to perform cleanup utility.

Signature of finalize() method

protected void finalize()

{

//finalize-code

}

Some Important Points to Remember

1. finalize() method is defined in JAVA.lang.Object class, therefore it is available to all the

classes

2. finalize() method is declare as protected inside Object class

3. finalize() method gets called only once by GC(Garbage Collector) threads

2.1.9. Object class

 In java there is a special class named Object

 Object is a super class of all other classes by default.

 The object can be obtained using getObject() method.

For example

Object obj=getObject();

2.2. Visibility Control

The access modifiers in Java specifies the accessibility or scope of a field, method,

constructor, or class. We can change the access level of fields, constructors, methods, and class by

applying the access modifier on it.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be accessed

from outside the class.

2. Default: The access level of a default modifier is only within the package. It cannot be

accessed from outside the package. If you do not specify any access level, it will be the

default.

Notes by: - Rajan Shukla

3. Protected: The access level of a protected modifier is within the package and outside the

package through child class. If you do not make the child class, it cannot be accessed from

outside the package.

4. Public: The access level of a public modifier is everywhere. It can be accessed from within

the class, outside the class, within the package and outside the package.

Example

class accessModifier

{

int a; //default

public int b;

private int c;

void fun(int val)

{

}

void show()

{

}

}

c=val;

System.out.println("c= "+c);

class Demo

{

public static void main(String args[])

{

accessModifier obj= new accessModifier();

obj.a=100; //valid

obj.b=200; //valid

obj.c=300; //Error: private access

obj.fun(300); //valid

obj.show(); //valid

}

}

Notes by: - Rajan Shukla

2.3. Arrays

 An array is a collection of similar type of elements which has contiguous memory location.

 Java array is an object which contains elements of a similar data type.

 We can store only a fixed set of elements in a Java array.

 Array in Java is index-based, the first element of the array is stored at the 0th index, 2nd

element is stored on 1st index and so on.

 Java provides the feature of anonymous arrays which is not available in C/C++.

Type of Array

There are two types of array.

 One/ Single Dimensional Array

 Two/Multidimensional Array

2.3.1. One/ Single Dimensional Array

The One dimensional array can be represented as

Array a[5]

10 20 70 40 50

0 1 2 3 4

Example

class Testarray

{

public static void main(String args[])

{

int a[]=new int[5]; //declaration and instantiation

a[0]=10;//initialization

a[1]=20;

a[2]=30;

a[3]=40;

a[4]=50;

//traversing array

Notes by: - Rajan Shukla

}

Output

for(int i=0;i<a.length;i++) //length is the property of array

System.out.println(a[i]);

}

10

20

70

40

50

We can declare, instantiate and initialize the java array together by:

int a[]={33,3,4,5}; //declaration, instantiation and initialization

Let's see the simple example to print this array.

class Testarray1

{

}

Output

10

20

30

40

50

public static void main(String args[])

{

int a[]={10,20,30,40,50}; //declaration, instantiation and initialization

//printing array

for(int i=0;i<a.length; i++) //length is the property of array

System.out.println(a[i]);

}

2.3.2. Two dimensional Array

In such case, data is stored in row and column based index (also known as matrix form).

Example to instantiate Multidimensional Array in Java

Notes by: - Rajan Shukla

int[][] arr =new int[3][3]; //3 row and 3 column

Example to initialize Multidimensional Array in Java

arr[0][0]=1;

arr[0][1]=2;

arr[0][2]=3;

arr[1][0]=4;

arr[1][1]=5;

arr[1][2]=6;

arr[2][0]=7;

arr[2][1]=8;

arr[2][2]=9;

Example of Multidimensional Java Array

Let's see the simple example to declare, instantiate, initialize and print the 2Dimensional array.

//Java Program to illustrate the use of multidimensional array

class Testarray2

{

public static void main(String args[])

{

//declaring and initializing 2D array

int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

//printing 2D array

for(int i=0;i<3;i++)

{

}

}

}

Output:

for(int j=0;j<3;j++)

{

System.out.print(arr[i][j] +" ");

}

System.out.println();

Notes by: - Rajan Shukla

1 2 3

2 4 5

4 4 5

2.3.3. Array of objects

Syntax

objname[]= new classname();

Program:-

 Define a class ‘student’ with data members stdrn, name and marks. Accept data for five

objects using array of objects and print it.

// Reading the data from keyboard

import java.util.*;

class student

{

int stdrn;

String name;

Double marks;

char gender;

void getdata()

{

}

void display()

{

Scanner in=new Scanner(System.in);

System.out.println("Enter Student Roll no:");

stdrn=in.nextInt();

System.out.println("Enter Student Name:");

name=in.next();

System.out.println("Enter Student Marks:");

marks=in.nextDouble();

System.out.println("Enter the Gender:");

gender=in.next().charAt(0);

System.out.println(" ");

Notes by: - Rajan Shukla

System.out.println("Student Roll no: "+stdrn);

System.out.println("Student Name: "+name);

System.out.println("Student Marks: "+marks);

System.out.println("Student Gender: "+gender);

System.out.println(" ");

}

}

class arrayofobject

{

public static void main(String[] args)

{

student s[]=new student[3];

System.out.println("Enter the Student data");

for(int i=0; i<3 ;i++)

{

s[i]= new student();

s[i].getdata();

}

System.out.println("Student Details is as follows");

for(int i=0; i<3 ;i++)

{

s[i].display();

}

}

}

Output:

Enter the Student data

Enter Student Roll no:

1

Enter Student Name:

rohini

Enter Student Marks:

Notes by: - Rajan Shukla

45.67

Enter the Gender:

F

Enter Student Roll no:

2

Enter Student Name:

vaidehi

Enter Student Marks:

78.65

Enter the Gender:

F

Enter Student Roll no:

3

Enter Student Name:

Ashish

Enter Student Marks:

46.65

Enter the Gender:

M

Student is as follows

Student Roll no: 1

Student Name: rohini

Student Marks: 45.67

Student Gender: F

Student Roll no: 2

Student Name: vaidehi

Student Marks: 78.65

Student Gender: F

Notes by: - Rajan Shukla

Student Roll no: 3

Student Name: Ashish

Student Marks: 46.65

Student Gender: M

2.4. Strings

Definition- String is a collection of characters.

In java, the string can be defined using two commonly used methods.

1) Using String class

2) Using StringBufferClass

2.4.1. String classes

 The syntax of String class is

String string_variable;

Example:-

class stringDemo

{

public static void main(String args[])

{

String s=”Welcome to java programming”;

Syste.out.println(“ ”+s);

}

}

Output

Welcome to java programming

Operation on Strings using String class.

Following are some commonly defined methods by a string class.

Method Description

s1.charAt(position) Return the character present at the index position.

s1.compareTo(s2) If s1<s2 then it returns positive. If s1>s2 then it return negative and if

s1=s2 then it returns zero.

Notes by: - Rajan Shukla

s1.concat(s2) It returns the concatenated string of s1 and s2.

s1.equals(s2) If s1 and s2 are both equal then it returns true.

s1.equalsIgnoreCase(s2) By ignoring case, if s1 and s2 are equal then it returns true.

s1.indexof(‘c’) It returns the first occurrence of character ‘c’ in the string s1.

s1.indexof(‘c’, n) It returns the position of ‘c’ that occur at after nth position in string s1.

s1.lenght() It gives the length of string s1.

String.valueof(var) Converts the value of the variable passed to it into string type.

Program for string demonstrating String class methods.

class StringMethodsDemo

{

public static void main(String[] args)

{

String s1="Java";

char ch;

//length();

System.out.println("The length of string "+s1+ " = " +s1.length()); //4

//charAt();

ch=s1.charAt(2);

System.out.println("The Char at 2 of string "+s1+ " = " +ch); //v

String s2="Java";

String s3="Programming";

//compareTo()

System.out.println("This is for CompareTo Method");

System.out.println(s1.compareTo(s2)); //0

System.out.println(s1.compareTo(s3)); // -6

System.out.println(s3.compareTo(s1)); //6

//equals();

if(s1.equals(s2)==true)

{

System.out.println(s1+" and " +s2+ " are equals");

}

Notes by: - Rajan Shukla

//concatnation (join)

System.out.println("Concatnation of " + s1+" and " +s3+ " = "+s1.concat(s3));

}

}

Output:-

The length of string Java = 4

The Char at 2 of string Java = v

This is for CompareTo Method

0

-6

6

Java and Java are equals

Concatnation of Java and Programming = JavaProgramming

2.4.2. String Buffer

 The StringBuffer is a class which is alternative to the String class. But StringBuffer class is

more flexible to use than the String class.

 That means, using StringBuffer we can insert some components to the existing string or

modify the existing string but in case of String class once the string is defined then it remains

fixed.

 Following are some simple methods used for StringBuffer-

Name of method Description

append(String str) Appends the string to the buffer

capacity() It returns the capacity of the string buffer

charAt(int index) It returns a specific character from the sequence which is

specified by the index.

delete(int start, int end) It deletes the characters from the string specified by the

starting and ending index.

insert(int offset, char ch) It inserts the character at the positions specified by the offset.

length() It return the length of the string buffer.

setCharAt(int index, char ch) The character specified by the index from the stringbuffer is

set to ch.

Notes by: - Rajan Shukla

setLength(int new_len) It sets the length of the string buffer.

toString() It converts the string representing data in this string buffer.

replace(int start, int end,

String str)

It replaces the characters specified by the new string

reverse() The character sequence is reversed.

 Difference between String & StringBuffer

Sr.

No
String StringBuffer

1 The length of string object is fixed. The length of StringBuffer can be increased.

2 The String object is immutable, that

means we can not modify the string

once created.

The StringBuffer class is immutable.

3 It is slower in performance. It is faster in performance.

4 It consumes more memory. It consumes less memory.

Programs

1) Performs the following string/ string buffer operations, write java program

a) Accept a password from user

b) Check if password is correct then display “Good”, else display “Wrong”.

c) Display the password in reverse order

d) Append password with “Welcome”.

import java.util.*;

class StringBufferDemo

{

public static void main(String[] args)

{

String s="MSBTE-S-21";

Scanner sc=new Scanner(System.in);

System.out.print("Enter the password: ");

String pwd=sc.nextLine();

Notes by: - Rajan Shukla

if(s.compareTo(pwd)==0)

System.out.println("Good");

else

System.out.println("Wrong");

StringBuffer s1=new StringBuffer(pwd);

s1=s1.reverse();

System.out.println("The reversed string is :"+s1);

Output:-

StringBuffer s2=new StringBuffer(pwd);

s2=s2.append(" Welcome: ");

System.out.println(" "+s2);

}

}

java StringBufferDemo

Enter the password: MSBTE-S-21

Good

The reversed string is :12-S-ETBSM

MSBTE-S-21 Welcome:

2) Write a simple java program to find the reverse string and check the weathered the

entered string is palindrome or not?

import java.util.*;

class ReversePalindrome

{

public static void main(String[] args)

{

String s1;

Scanner sc=new Scanner(System.in);

System.out.print("Enter the String: ");

Notes by: - Rajan Shukla

s1=sc.nextLine(); //nextLine()-- Accepting blank spaces

StringBuffer s2=new StringBuffer(s1);

s2.reverse();

System.out.println(" ");

System.out.println("Orignal String: "+s1);

System.out.println("Reversed String: "+s2);

System.out.println("Checking for Palindrome String: ");

System.out.println(" ");

if(s1.equals(s2.toString()))

{

System.out.println(s1+" is Palindrome String:");

}

else

}

}

System.out.println(s1+" is Not Palindrome String");

Enter the String: mom

Orignal String: mom

Reversed String: mom

Checking for Palindrome String:

mom is Palindrome String

Enter the String: Gunwant

Orignal String: Gunwant

Reversed String: tnawnuG

Checking for Palindrome String:

Gunwant is Not Palindrome String

Notes by: - Rajan Shukla

2.5. Vector

 The vector is a class in java that implements the dynamic array. This class stores any no. of

objects of any data type.

 This class is defined by java.util package.

 In vector one can store the elements of any data type. That means in a single vector you store

integer, string, double or any other data type elements altogether.

 Vector can be created like this-

Vector vectobj= new Vector(); //declaring vector without size

Vector vectobj= new Vector(5); //declaring vector with size

Advantages of vectors over array

1) Vectors contains elements of varying data types.

2) The size of vector can be changed whenever required.

3) It can store simple objects.

Following are the some most commonly used methods of vector class.

Methods Description

void addElement(object) For adding the element in the vector

Object elementAt(int index) Return the element present at specified location(index)

in vector.

void insertElementAt(object obj, int

pos)

For inserting the element in the vector specified by its

position.

boolean removeElement(object ele) Removes the specified element

void removeAllElements() For removing all the elements from the vector.

void removeAllElements(int pos) The elements specified by its position gets deleted from

the vector.

int capacity() Returns the capacity of the vector.

int size() It returns the total no. of elements present in the vector.

boolean isEmpty() Return true if the vector is empty.

Object firstElement() Return the first element of the vector.

int indexOf(object ele) Returns the index of corresponding element in the

vector.

void setSize(int size) This method is for setting the size of the vector.

Notes by: - Rajan Shukla

Program 1: Write a program, to create a vector with seven elements as {10, 30, 50, 20, 40, 10 ,

20}. Remove element at 3rd and 4th position. Insert new element at 3rd position. Display the

original and current size of the vector.

import java.util.*;

class VectorDemo

{

public static void main(String[] args)

{

Vector v1= new Vector(7);

v1.addElement(10);

v1.add(30);

v1.add(50);

v1.add(20);

v1.add(40);

v1.add(10);

v1.add(20);

System.out.println("The elements in the vector are:"+v1);

System.out.println("The orignal size of vector : "+v1.size());

System.out.println("Removing the Third Element ");

v1.remove(2); //3rd element

System.out.println("Removing the Fouth Element ");

v1.remove(3); //4rd element

System.out.println("Now The elements in the vector are:"+v1);

System.out.println("Inserting element 100 at 3rd position:");

v1.insertElementAt(100, 2); //inserting 100 at 3rd position

System.out.println("Now The elements in the vector are:"+v1);

System.out.println("The current size of vector : "+v1.size());

}

}

Output:-

Notes by: - Rajan Shukla

The elements in the vector are:[10, 30, 50, 20, 40, 10, 20]

The orignal size of vector : 7

Removing the Third Element

Removing the Fouth Element

Now The elements in the vector are:[10, 30, 20, 10, 20]

Inserting element 100 at 3rd position:

Now The elements in the vector are:[10, 30, 100, 20, 10, 20]

The current size of vector : 6

Program 2:- Write a program to add 2 integer, 2 string and 2 float objects to a vector. Remove

element specified by user and display the list.

2.6. Wrapper classes

 Wrapper classes are those classes that allow primitive data types to be accessed as objects.

 The Wrapper class is one kind of Wrapper around a primitive data type.

 The wrapper classes represent the primitive data types in its instances of the class.

 Following tables shows various primitive data types and the corresponding wrapper classes.

Primitive data type Wrapper class

boolean Boolean

byte Byte

char Char

double Double

float Float

int Integer

long Long

short Short

void Void

Notes by: - Rajan Shukla

2.6.1. Uses of Wrapper class

 Wrapper classes are used to convert numeric strings into numeric values.

 Wrapper classes are used to convert numeric values to string.

 Using the typeValue() method we can retrieve value of the object as its primitive data

type.

Program:-

1. Define wrapper class. Give the following wrapper class methods with syntax and use.

1) To convert integer number to string

2) To convert numeric string to integer number.

class WrapperDemo

{

public static void main(String[] args)

{

}

Output:-

System.out.println("Integer number to string Converstion:");

int i=100;

String s=Integer.toString(i);

System.out.println("int value:"+i);

System.out.println("Equivalent to string:"+s);

System.out.println(" ");

System.out.println("String to Integer Converstion:");

String s1="200";

int n=Integer.parseInt(s1);

System.out.println("String value:"+s1);

System.out.println("Equivalent to int:"+n);

}

Integer number to string Converstion:

int value:100

Equivalent to string:100

Notes by: - Rajan Shukla

String to Integer Converstion:

String value:200

Equivalent to int:200

2.7. Enumerated Types

 The enumerated data types can be denoted by the keyword enum.

 The enum helps to define the user defined data type.

 The value can also be assigned to the elements in the enum data type.

Program for enum Demonstration

class enumDemo

{

enum Color

{

Red, Green, Blue;

}

public static void main(String[] args)

{

Color c1=Color.Red;

System.out.println(c1);

}

}

Output

Red

End of Unit-II

	2.1. Constructor and methods
	2.1.1. Methods
	2.1.2. Constructor
	Rules for creating JAVA constructor
	Difference between Constructor and Method
	1. Default Constructor
	Example of default constructor.
	Note – If there is no constructor in a class, compiler automatically creates a default constructor.
	2. Parameterized Constructor
	2.1.4. Arguments Passing
	1. call-by-value
	Example of call-by-value
	2. call-by-reference
	Example of call-by-reference
	2.1.5. this keyword
	Example
	Program for this Keyword
	2.1.6. Command line argument in JAVA

	Programs on Command Line arguments
	1) Write a program to accept two number as command line arguments and print addition of those number?
	2) Write a program to accept number from command line and print the number is odd or even?
	3) Write a program to accept number from command line and print square root of the number?
	2.1.7. Garbage collection
	2.1.8. finalize() method
	2.1.9. Object class

	2.2. Visibility Control
	Example

	2.3. Arrays
	Type of Array
	2.3.1. One/ Single Dimensional Array
	Example
	2.3.2. Two dimensional Array
	Example to initialize Multidimensional Array in Java
	Example of Multidimensional Java Array
	2.3.3. Array of objects
	Program:-
	Output:

	2.4. Strings
	2.4.1. String classes
	Operation on Strings using String class.
	Program for string demonstrating String class methods.

	2.4.2. String Buffer
	2) Write a simple java program to find the reverse string and check the weathered the entered string is palindrome or not?

	2.5. Vector
	Advantages of vectors over array
	Following are the some most commonly used methods of vector class.

	2.6. Wrapper classes
	2.6.1. Uses of Wrapper class

	Program:-
	2.7. Enumerated Types
	Program for enum Demonstration
	Output

